Electroweak Loops in Elastic ep Scattering

Wally Melnitchouk Jefferson Lab
with Peter Blunden (Manitoba), Alex Sibirtsev (Juelich), Tony Thomas (Adelaide), John Tjon ${ }^{\dagger}$ (Utrecht)

Outline

- Background: two-photon exchange in elastic ep scattering
\rightarrow electric/magnetic form factor ratio puzzle: Rosenbluth separation v s. polarization transfer
- Parity-violating electron scattering
\rightarrow effect of γZ exchange on strange form factors
\rightarrow dispersive corrections to proton's weak charge ("Qweak" experiment at Jefferson Lab)
- Summary

Two-photon exchange in elastic $e-p$ scattering

Proton G_{E} / G_{M} ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}
$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

Proton G_{E} / G_{M} ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}
$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

QED radiative corrections

- cross section modified by 1γ loop effects

* IR divergences cancel

Two-photon exchange

- interference between Born and TPE amplitudes

- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

- "soft photon approximation" (used in all previous data analyses)
\longrightarrow approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at γ^{*} poles
\longrightarrow neglect nucleon structure (no form factors)

Two-photon exchange

■ "exact" calculation of loop diagram (including hadron structure)

\rightarrow few \% magnitude, non-linear in ε, positive slope
\rightarrow will reduce Rosenbluth ratio
\rightarrow does not depend strongly on vertex form factors

Two-photon exchange

Direct evidence?

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$
\rightarrow ratio of $e^{+} p / e^{-} p$ cross sections sensitive to $\Delta\left(\varepsilon, Q^{2}\right)$

\rightarrow simultaneous $e^{+} p / e^{-} p$ measurement using tertiary e^{+} / e^{-}beam to $Q^{2} \sim 1-2 \mathrm{GeV}^{2}$
(Hall B experiment E04-116)

Direct evidence?

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$

Very preliminary Novosibirsk data

e^{+}-p/e-p cross section ratio

Arrington, Holt et al. (2010)

Direct evidence?

- polarization transfer with recoil proton polarized normal to scattering plane
\rightarrow purely imaginary (does not contribute to form factor), vanishes in Born approximation!

Blunden, WM, Tjon, PRC 72, 034612 (2005)
\rightarrow effect largest at forward angles, grows with Q^{2}

Direct evidence?

- beam asymmetry for e polarized normal to scattering plane \rightarrow also vanishes for one-photon exchange

Wells et al., PRC 63, 064001 (2001)
\rightarrow significant inelastic contributions to imaginary part of TPE

Direct evidence?

- beam asymmetry for e polarized normal to scattering plane \rightarrow also vanishes for one-photon exchange

Maas et al., PRL 94, 082001 (2005)
\rightarrow significant inelastic contributions to imaginary part of TPE

Parity-violating electron scattering

Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

Parity-violating e scattering

■ Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents
vector asymmetry

$$
A_{V}=g_{A}^{e} \rho\left[\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right]
$$

axial vector asymmetry

$$
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z p} G_{M}^{\gamma p} / \sigma^{\gamma p}
$$

strange asymmetry

$$
A_{s}=-g_{A}^{e} \rho\left(\varepsilon G_{E}^{\gamma p} G_{E}^{s}+\tau G_{M}^{\gamma p} G_{M}^{s}\right) / \sigma^{\gamma p}
$$

Two-boson exchange corrections

" $\gamma(Z \gamma)$ "
" $Z(\gamma \gamma)$ "

$$
A_{\mathrm{PV}}=(1+\delta) A_{\mathrm{PV}}^{0} \equiv\left(\frac{1+\delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}}{1+\delta_{\gamma(\gamma \gamma)}}\right) A_{\mathrm{PV}}^{0}
$$

\rightarrow total TBE correction
Born asymmetry

$$
\delta \approx \delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}-\delta_{\gamma(\gamma \gamma)}
$$

Two-boson exchange corrections

\rightarrow previous estimates computed at $Q^{2}=0$, do not include hadron structure effects

Marciano, Sirlin (1980)

\rightarrow cancellation between $Z(\gamma \gamma)$ and $\gamma(\gamma \gamma)$ corrections, especially at low Q^{2}
\rightarrow dominated by $\gamma(Z \gamma)$ contribution

Effects on strange form factors

- global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$

$$
\begin{gathered}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{gathered}
$$

Young et al., PRL 97 (2006) 102002

- including TBE corrections:

$$
\begin{aligned}
& G_{E}^{s}=0.0023 \pm 0.0182 \\
& G_{M}^{s}=-0.020 \pm 0.254
\end{aligned}
$$

$$
\text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

Effects on strange form factors

- global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$

$$
\begin{gathered}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{gathered}
$$

Young et al., PRL 97 (2006) 102002

- including TBE corrections:

$$
\begin{array}{ll}
G_{E}^{s}=0.0023 \pm 0.0182 & \text { fixed mainly by }{ }^{4} \mathrm{He} \text { data ... } \\
G_{M}^{s}=-0.020 \pm 0.254 &
\end{array}
$$

at $Q^{2}=0.1 \mathrm{GeV}^{2}$

Correction to proton weak charge

- in forward limit A_{PV} measures weak charge of proton Q_{W}^{p}

$$
A_{\mathrm{PV}} \rightarrow \frac{G_{F} Q_{W}^{p}}{4 \sqrt{2} \pi \alpha} t
$$

forward limit

$$
\begin{aligned}
t & =\left(k-k^{\prime}\right)^{2} \rightarrow 0 \\
s & =(k+p)^{2} \\
& =M(M+2 E)
\end{aligned}
$$

- at tree level Q_{W}^{p} gives weak mixing angle

$$
Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}
$$

Correction to proton weak charge

- including higher order radiative corrections

$$
\begin{aligned}
Q_{W}^{p}= & \left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
& +\square_{W W}+\square_{Z Z}+\square_{\gamma Z} \longleftarrow \text { box diagrams } \\
= & 0.0713 \pm 0.0008 \\
& \text { Erler et al., PRD } 72,073003 \text { (2005) }
\end{aligned}
$$

$\rightarrow W W$ and ZZ box diagrams dominated by short distances, evaluated perturbatively
$\rightarrow \quad \gamma Z$ box diagram sensitive to long distance physics, has two contributions

Axial h correction

- axial h correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
\rightarrow computed by Marciano \& Sirlin as sum of two parts:
* low-energy part approximated by Born contribution (elastic intermediate state)
* high-energy part (above scale $\Lambda \sim 1 \mathrm{GeV}$) computed in terms of scattering from free quarks

$$
\begin{aligned}
\square_{\gamma Z}^{A} & =\frac{5 \alpha}{2 \pi}\left(1-4 \sin ^{2} \theta_{W}\right)\left[\ln \frac{M_{Z}^{2}}{\Lambda^{2}}+C_{\gamma Z}(\Lambda)\right] \\
& \approx 0.0028 \quad \text { short-distance } \quad \text { long-distance }
\end{aligned}
$$

Marciano, Sirlin, PRD 29, 75 (1984)
Erler et al., PRD 68, 016006 (2003)

Axial h correction

- axial h correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
\rightarrow repeat calculation using forward dispersion relations with realistic (structure function) input

* axial h contribution antisymmetric under $E^{\prime} \leftrightarrow-E^{\prime}$:

$$
\Re e \square_{\gamma Z}^{A}(E)=\frac{2}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{E^{\prime}}{E^{\prime \prime}-E^{2}} \Im m \square_{\gamma Z}^{A}\left(E^{\prime}\right)
$$

\star imaginary part can only grow as $\log E^{\prime} / E^{\prime}$

Axial h correction

\rightarrow imaginary part given by interference ${F_{3}^{\gamma Z}}^{\text {structure function }}$

$$
\begin{aligned}
\Im m \square \square_{\gamma Z}^{A}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} & \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
& \times \frac{g_{V}^{e}}{2 g_{A}^{e}}\left(\frac{4 M E}{W^{2}-M^{2}+Q^{2}}-1\right) F_{3}^{\gamma Z}
\end{aligned}
$$

with $g_{A}^{e}=-\frac{1}{2}, g_{V}^{e}=-\frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}\right)$
$\rightarrow F_{3}^{\gamma Z}$ structure function

* elastic part given by $G_{M}^{p} G_{A}^{Z}$
* resonance part from parametrization of ν scattering data (Lalakulich-Paschos)
* DIS part dominated by leading twist PDFs at small x (MSTW, CTEQ, Alekhin)

Axial h correction

\rightarrow energy dependence is weak
\rightarrow correction at $E=0$
$\rightarrow \quad c f$. MS value 0.0028 (or 0.7% increase)
\rightarrow resulting shift in weak charge

$$
Q_{W}^{p}=0.0713 \rightarrow 0.0718
$$

Blunden, WM, Thomas (2010)

Vector h correction

- vector h correction $\square_{\gamma Z}^{V}$ vanishes at $E=0$, but experiment has $E \sim 1 \mathrm{GeV}$ - what is energy dependence?
\rightarrow forward dispersion relation
ش $\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)$
* integration over $E^{\prime}<0$ corresponds to crossed-box, vector h contribution symmetric under $E^{\prime} \leftrightarrow-E^{\prime}$
\rightarrow imaginary part given by

$$
\left.\begin{array}{rl}
\Im m \\
\square
\end{array} \gamma_{\gamma}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}}\right)
$$

Gorchtein, Horowitz, PRL 102, 091806 (2009)

Vector h correction

$\rightarrow F_{1,2}^{\gamma Z}$ structure functions

* parton model for DIS region $F_{2}^{\gamma Z}=2 x \sum_{q} e_{q} g_{V}^{q}(q+\bar{q})=2 x F_{1}^{\gamma Z}$
$\rightarrow{F_{2}^{\gamma Z}}_{2} F_{2}^{\gamma}$ good approximation at low x
\rightarrow provides upper limit at large $x\left(F_{2}^{\gamma} \lesssim F_{2}^{\gamma}\right)$
* in resonance region use phenomenological input for F_{2}, empirical (SLAC) fit for R
\rightarrow for transitions to $\underline{I=3 / 2}$ states (e.g. Δ), CVC and isospin symmetry give $F_{i}^{\gamma Z}=\left(1+Q_{W}^{p}\right) F_{i}^{\gamma}$
\rightarrow for transitions to $\underline{I=1 / 2}$ states, $\mathrm{SU}(6)$ wave functions predict $Z \& \gamma$ transition couplings equal to a few $\%$

Vector h correction

\rightarrow compare structure function input with data

Vector h correction

\rightarrow total $\square_{\gamma Z}^{V}$ correction:
$\Re e \square_{\gamma Z}^{V}=0.0047_{-0.0004}^{+0.0011}$
or $6.6_{-0.6}^{+1.5} \%$ of uncorrected Q_{W}^{p}

$$
Q_{W}^{p}=0.0713 \rightarrow 0.0760
$$

Sibirtsev, Blunden, WM, Thomas, PRD 82, 013011 (2010)

Combined vector and axial h correction

$$
Q_{W}^{p}=0.0713(8) \rightarrow 0.0765_{-0.0009}^{+0.0014}
$$

\rightarrow significant shift in central value, errors within projected experimental uncertainty $\Delta Q_{W}^{p}= \pm 0.003$

* 4\% measurement of Q_{W}^{p}

Summary

- Two-photon exchange corrections resolve most of Rosenbluth / polarization transfer G_{E}^{p} / G_{M}^{p} discrepancy
\rightarrow striking demonstration of limitation of one-photon exchange approximation in ep scattering
\rightarrow direct tests from e^{+} / e^{-}comparison; polarization observables
- Dramatic effect of $\gamma(Z \gamma)$ corrections at forward angles on proton weak charge, $\Delta Q_{W}^{p} \sim 7 \%, c f$. PDG
\rightarrow would significantly shift extracted weak angle
\rightarrow will be better constrained by direct measurement of $F_{1,2,3}^{\gamma Z}$ (e.g. in PVDIS at JLab)

The End

Gorchtein, Horowitz, PRL 102, 091806 (2009)

(see also Gorchtein, Horowitz, Ramsey-Musolf, arXiv:1003.4300 [hep-ph])

$$
\Re e \delta_{\gamma Z}=\Re e \square_{\gamma Z}^{V} / Q_{W}^{p} \approx 6 \%
$$ mostly from high- W ("Regge") contribution

\rightarrow our formula for $\Im m \square_{\gamma Z}^{V}$ factor 2 larger (incorrect definition of parton model structure functions: "nuclear physics" vs."particle physics" weak charges!)
\rightarrow GH omit factor (1-x) in definition of $F_{1,2}$ ($\sim 30 \%$ enhancement)
$\rightarrow \mathrm{GH}$ use $Q_{W}^{p} \sim 0.05$ cf. ~ 0.07 ($\sim 40 \%$ enhancement)
\rightarrow numerical agreement coincidental!

